C-Jun N-terminal kinase regulates adenosine A1 receptor-mediated synaptic depression in the rat hippocampus.

نویسندگان

  • Tyson B Brust
  • Francisco S Cayabyab
  • Brian A MacVicar
چکیده

Adenosine A1 receptors are ubiquitous mediators of presynaptic inhibition of neurotransmission in the central nervous system, yet the signalling pathway linking A1 receptor activation and decreased neurotransmitter release remains poorly resolved. We tested the contribution of c-Jun N-terminal kinase (JNK) to adenosine A1 receptor-mediated depression of field excitatory postsynaptic potentials (fEPSPs) in area CA1 of the rat hippocampus. We found that inhibition of JNK with SP600125 or JNK inhibitor V, but not an inactive analogue, attenuated the depression of fEPSPs induced by adenosine, hypoxia, and the A1 receptor agonist N(6)-cyclopentyladenosine (CPA). In contrast, the JNK inhibitor SP600125 did not inhibit GABA(B)-mediated synaptic depression. In support of our electrophysiological findings, Western blot analysis showed that A1 receptor stimulation resulted in a transient increase in JNK phosphorylation in the membrane fraction of hippocampal lysates. The total amount of JNK in the membrane fraction was unchanged by CPA treatment. The increase in phosphorylated JNK induced by A1 receptor stimulation was blocked by the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), indicating that A1 receptors specifically activate JNK in the hippocampus. Together with functional data indicating that JNK inhibition decreased CPA-induced paired pulse facilitation, these results suggest that JNK activation is necessary for adenosine A1 receptor-mediated synaptic depression occurring at a presynaptic locus The adenosine A1 receptor-JNK signalling pathway may represent a novel mechanism underlying inhibition of neurotransmitter release in the CNS.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

p38 mitogen-activated protein kinase contributes to adenosine A1 receptor-mediated synaptic depression in area CA1 of the rat hippocampus.

Adenosine is arguably the most potent and widespread presynaptic modulator in the CNS, yet adenosine receptor signal transduction pathways remain unresolved. Here, we demonstrate a novel mechanism in which adenosine A1 receptor stimulation leads to p38 mitogen-activated protein kinase (MAPK) activation and contributes to the inhibition of synaptic transmission. Western blot analysis indicated t...

متن کامل

GABA and Endocannabinoids Mediate Depotentiation of Schaffer Collateral Synapses Induced by Stimulation of Temperoammonic Inputs

Long-term potentiation (LTP) of Schaffer collateral (SC) synapses in the hippocampus is thought to play a key role in episodic memory formation. Because the hippocampus is a shorter-term, limited capacity storage system, repeated bouts of learning and synaptic plasticity require that SC synapses reset to baseline at some point following LTP. We previously showed that repeated low frequency acti...

متن کامل

P3: Mechanisms of TrkB-Mediated Hippocampal Long-Term Potentiation in Learning and Memory

Long-term potentiation (LTP) is a process that certain types of synaptic stimulation lead to a long-lasting enhancement in the strength of synaptic transmission. Studies in recent years indicate the importance of molecular pathways in the development of memory and learning. Tropomyosin receptor kinase B (TrkB) is a member of the neurotrophin receptor tyrosine kinase family, that its ligand is b...

متن کامل

Mechanisms underlying dedepression of synaptic NMDA receptors in the hippocampus.

N-Methyl-D-aspartate receptor (NMDAR)-mediated synaptic responses in hippocampal CA1 pyramidal cells are depressed during NMDAR-dependent long-term depression (LTD) due to mechanisms, in part, distinct from those underlying LTD of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR)-mediated synaptic responses. The mechanisms underlying dedepression of synaptic NMDARs, howe...

متن کامل

The effect of ketamine on NMDA receptor-mediated LTP depends on ketamine effects on non-NMDA-mediated synaptic transmission in CA1 area of rat hippocampal slices

It has been reported that ketamine as an uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist has also non-NMDA receptor antagonist properties. We recently found that ketamine (20 ?M) affected differently induction of NMDA receptor-mediated long-term potentiation (LTP) when administered 30 min prior to tetanic Primed-Bursts (PBs) stimulation. On the other hand, ketamine also influenced...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuropharmacology

دوره 53 8  شماره 

صفحات  -

تاریخ انتشار 2007